If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-1/36=0
We multiply all the terms by the denominator
t^2*36-1=0
Wy multiply elements
36t^2-1=0
a = 36; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·36·(-1)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*36}=\frac{-12}{72} =-1/6 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*36}=\frac{12}{72} =1/6 $
| 16-8x+x2=0 | | 2x+(x-4)+(25-2x+(x-4))=25 | | -2=5(x+4)-7 | | 9/2x=3,6 | | -6x+4=-2x+24 | | 4(x+1)-9=11 | | 2x+(x-4)+(25-2x+(x-4)=25 | | 25981,80=x+(x*0,12) | | 2(5x-2)=-34 | | -48=4(3x-3) | | 25009,80=x+(x*0,12) | | X2+3=7+x | | 12r^2+23r=24 | | 3x+17=73-5x | | 1/2x+2=x-1 | | 32=6p+2 | | 4(2x–9)=3x+4 | | -7x+1=-55 | | x-2=3(x-2) | | 14+5z=-6 | | 2x+20=4(3x-5) | | 4x2-2x+10=0 | | 3(3x+2)=-x+26 | | 4x+20=3(4x+4) | | 10r-2=-6r+30 | | (3x-2)^(2)-5(3x-2)-6=0 | | 2(x+2)-5x=2x-11 | | 3r(8r-1)=0 | | 0.4(8−0.2w) =−4 | | 3-y=-5 | | 5x-3x/6=-12 | | x-(3x-1)=-5 |